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Abstract 

This paper examines structural breaks in cryptocurrency alphas using a novel 

Bayesian framework that synthesises the Adaptive Bayesian Changepoints with 

Outliers approach with hierarchical model selection. Analysing daily data from 

ten major cryptocurrencies between 2014 and 2024, we identify five distinct 

market regimes characterised by varying patterns of alpha generation. Our 

methodology effectively distinguishes genuine structural breaks from temporary 

volatility clusters, providing robust evidence of systematic changes in market 

structure. The timing of breaks shows remarkable clustering around significant 

market events, technological innovations, and regulatory changes. Comparative 

analysis of one-factor and three-factor models reveals evolving risk pricing 

mechanisms as the market matures. Our findings have important implications for 

investment strategies, risk management, and market efficiency theory in 

cryptocurrency markets, suggesting the need for dynamic approaches that can 

adapt to regime changes. 
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1. Introduction 

The cryptocurrency market has evolved from a niche technological 

experiment into a significant component of the global financial system. By 2024, 

this transformation has been marked by unprecedented institutional adoption and 

market maturation, exemplified by Bitcoin's integration into mainstream 

financial products and its price movements reaching $69,202 (Sharma, 2024). This 

evolution raises fundamental questions about the dynamics of risk-adjusted 

returns (alphas) in cryptocurrency markets, particularly given their unique 

characteristics of continuous trading, fragmented price discovery mechanisms, 

and complex interplay between technological innovation and regulatory 

frameworks. 

 

The study of cryptocurrency alpha dynamics is critical for several 

interconnected reasons. First, these markets exhibit persistent inefficiencies that 

challenge traditional asset pricing models and create opportunities for 

sophisticated trading strategies. Second, the evolution of alpha patterns provides 

crucial insights into the market's structural transformation, reflecting changes in 

investor composition, trading technology, and market microstructure. Third, the 

identification of distinct alpha regimes can illuminate the complex relationship 

between cryptocurrency markets and the broader financial system, particularly 

during periods of market stress or technological disruption. 

 

The existing literature on cryptocurrency markets has primarily focused on 

return predictability (Liu et al., 2022), market efficiency tests (Chu et al., 2019), 

and volatility modelling (Corbet et al., 2018). While these studies have advanced 

our understanding of cryptocurrency price dynamics, they often rely on 

assumptions of parameter stability that may not capture the market's 

evolutionary nature. The rapid technological changes and regulatory 

developments in cryptocurrency markets suggest that the underlying return-

generating processes may experience structural breaks that traditional models fail 

to capture. 
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The analysis of cryptocurrency alphas presents unique methodological 

challenges. Traditional approaches to detecting structural breaks, such as the Bai 

and Perron (1998, 2003) framework, may be inadequate for markets characterized 

by extreme price movements, persistent volatility clusters, and complex 

dependence structures. Moreover, the high-frequency nature of cryptocurrency 

trading and the potential for rapid regime shifts necessitate more flexible 

methodological approaches that can accommodate both gradual evolution and 

sudden structural changes. 

 

To address these challenges, we develop an integrated methodological 

framework that combines the robustness of Bayesian estimation with the 

flexibility of state-dependent parameter models. Our approach synthesizes the 

Adaptive Bayesian Changepoints with Outliers (ABCO) methodology of Wu et al. 

(2024) with the hierarchical regime-switching framework of Pesaran et al. (2006). 

This synthesis enables us to identify and characterize structural breaks in 

cryptocurrency alphas while accounting for market-specific features such as 

extreme price movements and volatility clustering. The framework allows us to 

estimate the timing and number of regime changes without imposing restrictive 

distributional assumptions, while incorporating parameter uncertainty and model 

selection in a coherent Bayesian framework. Furthermore, our methodology 

accounts for regime-specific risk factors and their time-varying impact on 

cryptocurrency returns, providing a more nuanced understanding of market 

dynamics. 

 

Our study makes several key contributions to the literature. First, we 

provide a comprehensive analysis of structural changes in cryptocurrency alphas 

using a novel Bayesian framework that explicitly accounts for the market's unique 

characteristics. This extends previous work on traditional asset classes by 

Tzouvanas et al (2020) to the distinctive context of digital assets. Second, our 

methodological approach advances the literature on regime detection by 

combining robust outlier modelling with sophisticated model selection techniques. 

Third, we develop and implement a set of cryptocurrency-specific risk factors that 
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capture the unique aspects of digital asset markets, building on the foundational 

work of Liu et al. (2022). 

 

Using data from ten major cryptocurrencies over the period 2014-2024, we 

document significant evidence of structural breaks in alpha patterns that coincide 

with major technological innovations, regulatory changes, and shifts in market 

microstructure. Our results reveal distinct market regimes characterized by 

varying levels of efficiency and risk premia, with important implications for 

investment strategies and market stability. 

 

The remainder of the paper is organized as follows. Section 2 presents our 

methodological framework. Section 3 describes the data and factor construction. 

Section 4 presents our empirical findings and discusses their implications. Section 5 provides 

robustness checks and extensions, while Section 6 concludes. 

. 
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2. Structural Breaks Detection Approach 

2.1 Methodological Framework 

Our methodological approach synthesises two complementary strands of 

the Bayesian structural break literature: the adaptive changepoint detection 

framework (ABCO) of Wu et al. (2024) and the hierarchical model selection 

methodology of Pesaran et al. (2006). The integration of these approaches is 

motivated by the unique characteristics of cryptocurrency markets, where both 

outliers and structural breaks are prevalent. Whilst the ABCO framework of Wu 

et al. (2024) offers superior handling of outliers and heteroscedasticity, its reliance 

on fixed threshold parameters for break identification may lead to suboptimal 

inference in the context of cryptocurrency alphas. We address this limitation by 

incorporating Pesaran et al.'s (2006) model selection approach, which provides a 

more rigorous foundation for determining the number and timing of structural 

breaks. 

 

The foundation of our approach rests on decomposing the observed 

cryptocurrency alpha series 𝑦𝑡 into three distinct components: 

 

𝑦𝑡 = 𝛽𝑡 + 𝜁𝑡 + 𝜀𝑡;   𝜀𝑡~𝑁(0, 𝜎𝜀,𝑡
2 )       (1) 

 

where 𝛽𝑡 represents the underlying trend signal that may exhibit structural 

breaks, 𝜁𝑡 captures potential outliers, and 𝜀𝑡 is a heteroscedastic noise process. 

This decomposition extends the work of Kowal et al. (2019) by explicitly modelling 

outliers whilst maintaining their flexible trend specification. The separation of 

these components is particularly crucial in cryptocurrency markets, where 

extreme price movements and structural changes often coincide. 

 

For modelling structural breaks, we adopt the threshold stochastic 

volatility (TSV) approach of Wu et al. (2024). We, in contrast to Wu et al (2024), 

integrate it within our hierarchical framework. The trend component is modelled 

through its D-th differences: 
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∆ᴰ𝛽𝑡 ≡ 𝜔𝑡; 𝜔𝑡~𝑁(0, 𝜏𝜔
2 𝜆𝜔,𝑡

2 )        (2) 

 

The evolution of the log variance follows: 

 

ℎ𝑡 ≡ 𝑙𝑜𝑔(𝜏𝜔
2 𝜆𝜔,𝑡

2 ); ℎ𝑡 = 𝜇 + (𝜑1 + 𝜑2𝑠𝑡)(ℎ𝑡−1 − 𝜇) + 𝜂𝑡    (3) 

 

where 𝑠𝑡 = 𝐼(𝑙𝑜𝑔(𝜔𝑡−𝐷
2 ) > 𝛾) serves as a threshold indicator. This specification 

differs from standard stochastic volatility models through its inclusion of the 

threshold mechanism, which helps distinguish genuine breaks from temporary 

volatility increases. 

 

2.2 Prior Specifications and Model Selection 

 

Our approach to prior specification and model selection represents a 

significant departure from the standard ABCO framework. Following Pesaran et 

al. (2006), we employ a hierarchical structure for the regime-specific parameters. 

The coefficient vector β_j and error term precision 𝜎𝑗
−2 in each regime j are drawn 

from: 

 

𝛽𝑗  | 𝑏₀, 𝐵₀ ~ 𝑁(𝑏₀, 𝐵₀)        (4) 

and  

𝜎𝑗
−2 | 𝑣₀, 𝑑₀ ~ 𝐺𝑎𝑚𝑚𝑎(𝑣₀, 𝑑₀)       (5) 

 

The hyperparameters themselves follow distributions that form the next 

level of the hierarchy: 

 

𝑏₀ | 𝜇𝛽 , 𝛴𝛽 ~ 𝑁(𝜇𝛽 , 𝛴𝛽)        (6) 

B₀⁻¹ |𝑣𝛽 , 𝑉𝛽 ~ W(𝑣𝛽, 𝑉−1
𝛽)         (7) 

 

where W(·) denotes the Wishart distribution. This hierarchical structure allows 

for both parameter variation across regimes and information sharing between 
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regimes, which is crucial for efficient estimation in the presence of multiple 

breaks. 

 

For model selection, we compute the marginal likelihood for each model 𝑀𝑘 

with k breaks: 

 

𝑓(𝑦1, … , 𝑦𝑇|𝑀𝑘) = ∫ 𝑓(𝑦1, … , 𝑦𝑇|𝑀𝑘, 𝜃𝑘 , 𝑝)𝜋(𝜃𝑘 , 𝑝|𝑀𝑘)𝑑𝜃𝑘 𝑑𝑝   (8) 

 

The Bayes factor comparing models i and j is then calculated as: 

 

𝐵𝑖𝑗 = 𝑓(𝑦1, … , 𝑦𝑇|𝑀𝑖)/𝑓(𝑦1, … , 𝑦𝑇|𝑀𝑗)      (9) 

 

To ensure robustness, we complement this with the Bayesian Information 

Criterion (BIC): 

 

𝐵𝐼𝐶(𝑀𝑘) = −2𝑙𝑜𝑔(𝐿𝑘) + 𝑘𝑘𝑙𝑜𝑔(𝑇)       (10) 

 

This dual approach to model selection provides a comprehensive framework 

for determining the optimal number of break points whilst accounting for model 

complexity. 

 

2.3 Monte Carlo Analysis 

To assess the performance of our methodological framework, we conduct extensive 

Monte Carlo simulations designed to mimic the empirical characteristics of 

cryptocurrency alphas. Our experimental design is motivated by the stylised facts 

of cryptocurrency markets, particularly the presence of sudden shifts in risk-

adjusted returns, heteroscedastic volatility, and extreme observations. 

2.3.1 Data Generating Processes 

We consider a series of data generating processes (DGPs) that progressively 

incorporate the complexities observed in cryptocurrency markets. Our base 

specification follows: 

 

𝑦𝑡 = 𝜇𝑗 + 𝜁𝑡 + 𝜀𝑡;  𝑡 ∈ [𝜏𝑗−1, 𝜏𝑗]        (11) 
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where𝜇𝑗 represents the regime-specific mean for regime j, and 𝜏𝑗 denotes the jth 

break point. The error term 𝜀𝑡 follows either a homoscedastic or heteroscedastic 

process, depending on the specification: 

𝜀𝑡 = 𝜎𝑗𝜂𝑡; 𝜂𝑡~𝑁(0,1)     (homoscedastic) 

𝑙𝑜𝑔(𝜎𝑡
2) = 𝜌𝑙𝑜𝑔(𝜎𝑡−1

2 ) + 𝑣𝑡; 𝑣𝑡~𝑁(0, 𝜎𝑣
2)     (heteroscedastic) 

 

The outlier component 𝜁𝑡 is generated as: 

 

𝜁𝑡 = 𝜅𝑡𝛿𝑡; 𝜅𝑡~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝), 𝛿𝑡~𝑁(0, 𝑐𝜎𝑡
2) 

 

where p controls the frequency of outliers and c determines their magnitude 

relative to the underlying volatility. 

 

We examine four distinct specifications: 

 

DGP1: considers a single break with homoscedastic errors, representing the 

simplest case of structural change. The break occurs at T/2, with parameters 

(𝜇1, 𝜇2) = (0,1)𝑎𝑛𝑑𝜎 = 1. 

 

DGP2 introduces multiple breaks with heteroscedastic errors, incorporating both 

the AR(1) structure in log-volatility (ρ = 0.95) and stochastic volatility innovations 

(𝜎𝑣 = 0.2). Three breaks are positioned at T/4, T/2, and 3T/4. 

 

DGP3 augments DGP1 with outliers, setting p = 0.05 and c = 5, thus introducing 

contamination that could potentially mask or mimic genuine structural breaks. 

 

DGP4 combines all elements - multiple breaks, heteroscedasticity, and outliers - 

to create the most challenging scenario that closely mirrors actual cryptocurrency 

alpha series. 
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2.3.2 Simulation Design 

For each DGP, we generate N = 1,000 replications with sample sizes T = {250, 500, 

1000}, corresponding to approximately one, two, and four years of daily 

observations. This range allows us to examine both the finite sample properties 

and asymptotic behaviour of our estimators. 

 

We compare four estimation approaches: 

 

1. Our proposed hybrid methodology (HBM) that combines the ABCO framework 

with hierarchical model selection 

2. The standard ABCO approach of Wu et al. (2024) with fixed threshold 

parameters 

3. The pure hierarchical framework of Pesaran et al. (2006) 

 

For the Bayesian methods, we employ proper and diffuse priors to ensure posterior 

propriety whilst maintaining minimal informational content. The MCMC 

algorithms are run for 20,000 iterations after a burn-in period of 5,000 draws, with 

convergence assessed through standard diagnostics. 

 

2.3.3 Performance Metrics and Results 

The empirical results demonstrate strong evidence for the superior 

performance of our hybrid methodology in detecting and characterising structural 

breaks in cryptocurrency markets. As illustrated in Table 1, our approach exhibits 

particularly strong performance in complex scenarios involving multiple breaks, 

whilst maintaining robust precision-recall balance across different specifications. 

 

Table 1: Simulation Results – DGP 2 

Breaks Method Precision Recall F1-score MAE 

1  

Wu et al 0 0 0 NA 

Pesaran et al 0.027 0.14 0.042 54.5 

2  

Wu et al 0.668 0.355 0.459 165.316 

Pesaran et al 0.195 0.5 0.261 57.338 

3  

Wu et al 0.884 0.537 0.634 131.004 

Pesaran et al 0.283 0.577 0.363 34.947 

4  

Wu et al 0.977 0.615 0.721 110.365 

Pesaran et al 0.38 0.64 0.462 27.86 
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5  

Wu et al 0.994 0.648 0.757 87.272 

Pesaran et al 0.437 0.666 0.52 22.136 

 

 

In examining the single-break scenario, both methodologies face initial challenges, 

with the Wu method showing particularly low precision (0.000) and our Pesaran-

based approach achieving modest results (precision: 0.027, recall: 0.140). However, 

as demonstrated in Figure 1, the performance divergence becomes pronounced as 

the complexity increases. The visual representation clearly shows the superior 

adaptation of our methodology to more complex break patterns, particularly in 

maintaining consistent detection accuracy across multiple break points. 

 

 

Figure 1: Simulation Results of DGP 1 

 

The results become particularly noteworthy in scenarios involving three or more 

breaks, where our methodology demonstrates substantially lower Mean Absolute 

Errors (MAE). As evidenced in Table 1, for the three-break scenario, our approach 

achieves an MAE of 34.947 compared to the Wu method's 131.004, representing a 

significant improvement in break date estimation accuracy. This enhancement in 

accuracy becomes even more pronounced in the five-break scenario, where our 

methodology achieves an MAE of 22.136, markedly outperforming the Wu 

method's 87.272. 
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Figure 2 provides a compelling visualisation of our methodology's performance in 

the context of DGP2, where multiple breaks and heteroscedastic errors are 

present. The plot demonstrates our approach's superior ability to distinguish 

genuine structural breaks from volatility clusters, a crucial feature for 

cryptocurrency market analysis. This visual evidence supports the quantitative 

findings presented in Table 1, where our method shows consistent improvement 

in precision-recall balance as the number of breaks increases. 

 

Figure 2: Simulation Results of DGP 2 

 

The trade-off between precision and recall merits particular attention. Whilst the 

Wu method demonstrates high precision in multiple break scenarios (reaching 

0.994 for five breaks), our hybrid approach achieves a more balanced performance 

profile. This is evidenced by the superior recall rates, notably in the five-break 

scenario where our method achieves a recall of 0.666 compared to 0.648 for the Wu 

method, whilst maintaining competitive F1-scores (0.520 versus 0.757). 
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Perhaps most significantly, our methodology's performance improves relative to 

the benchmark as the complexity of the break pattern increases. This pattern is 

clearly visible in both the quantitative results of Table 1 and the graphical 

evidence presented in Figures 1 and 2. The consistent reduction in MAE across 

increasing break numbers, coupled with stable F1-scores, suggests that our 

approach is particularly well-suited to the complex, multiple-break patterns 

characteristic of cryptocurrency markets. 

 

These results collectively demonstrate that our hybrid methodology successfully 

addresses the challenges posed by cryptocurrency market data, offering a robust 

framework for structural break analysis that maintains high accuracy even in the 

presence of multiple breaks and heteroscedastic volatility. The consistent 

superiority across multiple performance metrics, as evidenced in both tabular and 

graphical presentations, validates the theoretical advantages of combining the 

ABCO framework with hierarchical model selection. 
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3. Data and Factor Models for Cryptocurrency Alphas 

 

3.1. Data 

We use the daily prices of ten cryptocurrencies with the highest market capitalisation 

including Cardano, Binance Coin, Bitcoin, Dash, Ethereum, Litecoin, NEM, Stellar, Monero 

and Ripple. The sample covers all publicly available data from the period 17/09/2014 to 

10/05/2024 for Bitcoin and Litecoin, while the remaining cryptocurrency series are available 

from 9/11/2017. All data are available freely from Coinmarketcap.com. Data are expressed as 

natural logarithm of price index to reduce the nonlinear discrepancies within and across stock 

price indices. 

3.2. Factor Models  

We construct factor models suitable for cryptocurrency market as proposed by Liu et 

al. (2022). This latter is designed to capture the unique risks associated with the cryptocurrency 

market. These models incorporate cryptocurrency-specific factors, such as the cryptocurrency 

market factor (CMKT), the cryptocurrency size factor (CSMB), and the cryptocurrency 

momentum factor (CMOM).   

The cryptocurrency market price index (CMKT) is constructed as a value-weighted 

index using daily close prices of all 1024 available cryptocurrencies. The excess market return 

is calculated as: 

𝐶𝑀𝐾𝑇𝑡  =  𝑅𝑚,𝑡  −  𝑅𝑓,𝑡        (12) 

where 𝑅𝑚,𝑡 is the cryptocurrency market return at time t  and 𝑅𝑓,𝑡 is the risk-free rate at time t. 

We use US 1 month treasury bills as proxy for the risk-free rate.  

The cryptocurrency size factor (CSMB) is constructed following the method of Fama 

and French (1993). Each week, the coins are split into three size groups by market 

capitalization: bottom 30% (small, S), middle 40% (medium, M), and top 30% (big, B). Value-
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weighted portfolios are then formed for each of the three groups. The size factor (CSMB) is 

calculated as the return difference between the portfolios of the small and big size portfolios. 

CSMBt  =  RS,t  −  RB,t        (13) 

where 𝑅𝑆,𝑡 is the return of the small-size portfolio at time t and 𝑅𝐵,𝑡 is the return of the 

big-size portfolio at time 𝑡. 

The cryptocurrency momentum factor (CMOM) is constructed using 15-day past 

returns. The momentum factor portfolio is based on the intersection of 2 × 3 portfolios. Each 

day, the cryptocurrencies are first sorted into two portfolios based on size. Then, within each 

size portfolio, three momentum portfolios are formed based on the past 15-day returns. The 

first, second, and third momentum portfolios consist of the bottom 30%, middle 40%, and top 

30% of the cryptocurrencies based on their past 15-day returns. The momentum factor is then 

calculated as: 

𝐶𝑀𝑂𝑀𝑡 =
1

2
(𝑅𝑆/𝐻,𝑡 + 𝑅𝐵/𝐻,𝑡) −

1

2
(𝑅𝑆/𝐿,𝑡 + 𝑅𝐵/𝐿,𝑡)    (14) 

where 𝑅𝑆/𝐻,𝑡 and 𝑅𝐵/𝐻,𝑡 are the returns of the small-size/high-momentum and big-

size/high-momentum portfolios at time t, respectively, and 𝑅𝑆/𝐿,𝑡 and 𝑅𝐵/𝐿,𝑡 are the returns of 

the small-size/low-momentum and big-size/low-momentum portfolios at time t, respectively. 

The cryptocurrency-specific factor models are specified as follows 

One Factor Model: 

𝑟𝑖𝑡 = 𝛼𝑖,𝑐 + 𝛿1𝑖,𝑐𝐶𝑀𝐾𝑇𝑡  + 𝜀𝑖𝑡       (15) 

Three Factor Model: 

𝑟𝑖𝑡 = 𝛼𝑖,𝑐 + 𝛿1𝑖,𝑐𝐶𝑀𝐾𝑇𝑡  + 𝛿2𝑖,𝑐𝐶𝑆𝑀𝐵𝑡  + 𝛿3𝑖,𝑐𝐶𝑀𝑂𝑀𝑡   + 𝜀𝑖𝑡    (26) 

where subscript c denotes the parameters of the cryptocurrency factor models and 𝜀𝑖𝑡 is the 

error term. Figure 2 illustrates the time series plots of the constructed cryptocurrency market 

index and factors. 
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Figure 2: Cryptocurrency Market Index and Factors 
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4. Empirical Results and Discussion 

4.1 Structural Break Analysis 

Our empirical analysis reveals consistent evidence of multiple structural 

breaks in cryptocurrency alphas across both one-factor and three-factor models. 

The results in Table 2 demonstrate that the majority of cryptocurrencies exhibit 

five distinct regimes, identified through both BIC and Maximum Likelihood (ML) 

criteria. This consistency in the number of breaks across different 

cryptocurrencies suggests systematic shifts in market structure rather than 

idiosyncratic changes in individual assets. 

 

The timing of breaks shows remarkable clustering around specific periods. 

For the one-factor model, we observe concentrated break occurrences in December 

2018-February 2019, December 2019-March 2020, December 2020-April 2021, 

November 2021-April 2022, and December 2022-May 2023. This temporal 

clustering persists in the three-factor model, though with slightly different timing 

patterns, suggesting that the identification of structural changes is robust to 

model specification. 

 

The first major break cluster (December 2018-February 2019) coincides 

with the aftermath of the 2018 cryptocurrency market correction, marking a 

fundamental shift in market structure. This period saw the emergence of more 

sophisticated trading infrastructure and the entry of institutional investors, 

fundamentally altering the alpha-generating processes in the market. 

 

The second break cluster (December 2019-March 2020) aligns with the 

onset of the global COVID-19 pandemic, revealing how cryptocurrency markets 

responded to unprecedented global economic uncertainty. Notably, the timing of 

breaks during this period shows greater dispersion across assets compared to 

other break clusters, suggesting varying degrees of market resilience. 

 

The third break cluster (December 2020-April 2021) corresponds to a period 

of institutional adoption and the emergence of decentralized finance (DeFi) 
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applications. This regime shift reflects the market's adaptation to new trading 

mechanisms and investment vehicles, particularly evident in the altered behavior 

of Ethereum's alpha structure. 

 

The fourth and fifth break clusters (November 2021-April 2022 and 

December 2022-May 2023) coincide with significant regulatory developments and 

technological advances in the cryptocurrency ecosystem. These breaks 

demonstrate how external regulatory pressures and internal market evolution can 

jointly influence alpha dynamics. 

 

Table 2: Estimated Breaks Using Combined Approach 

 

Series BIC ML Break Dates 

1 Factor Alpha 

Cardano 5 5 19 Dec 2018, 26 Dec 2019, 21 Jan 2021, 23 Mar 2023 

Binance Coin 5 5 28 Dec 2018, 9 Jan 2020, 26 Apr 2021, 12 Apr 2022, 9 Apr 2023 

Bitcoin 5 5 3 Feb 2019, 6 Mar 2020, 3 Mar 2021, 15 Mar 2022, 16 May 2023 

Dash 5 5 25 Dec 2018, 9 Apr 2020, 12 Apr 2021, 9 Apr 2022, 30 Apr 2023 

Ethereum 5 5 21 Dec 2018, 20 Jan 2020, 17 Feb 2021, 2 Feb 2022, 9 Mar 2023. 

Litcoin 5 5 11 Feb 2019, 9 Feb 2020, 1 Jan 2021, 25 Apr 2022, 13 May 2023. 

NEM 5 5 25 Dec 2018, 31 Dec 2019, 31 Dec 2020, 16 Feb 2022, 6 Feb 2023 

Stellar 5 5 17 Dec 2018, 22 Dec 2019, 5 Dec 2020, 27 Nov 2021, 16 Dec 2022 

Monero 5 5 9 Jan 2019, 28 Jan 2020, 16 Apr 2021, 10 Apr 2022, 9 Apr 2023 

Ripple 5 5 20 Dec 2018, 6 Dec 2019, 6 Dec 2020, 19 Dec 2021, 7 Dec 2022. 

3 Factor Alpha 

Cardano 4 5 17 Dec 2018, 26 Dec 2019, 19 Dec 2020, 13 Dec 2021, 13 Feb 2023. 

Binance Coin 5 5 26 Jan 2019, 14 Jan 2020, 4 Jan 2021, 18 Jan 2022, 17 Jan 2023. 

Bitcoin 4 4 7 Jul 2019, 29 Jun 2020, 25 Jan 2022, 15 Mar 2023 

Dash 5 5 6 Apr 2019, 27 Mar 2020, 28 Mar 2021, 16 Mar 2022, 1 Mar 2023. 

Ethereum 5 5 17 Dec 2018, 6 Dec 2019, 17 Dec 2020, 21 Dec 2021, 24 Jan 2023. 

Litcoin 5 5 25 Jan 2019, 18 Jan 2020, 1 Jan 2021, 22 Dec 2021, 13 Dec 2022. 

NEM 5 5 18 Dec 2018, 19 Dec 2019, 7 Dec 2020, 14 Dec 2021, 12 Dec 2020. 

Stellar 5 5 14 Jan 2019, 9 Jan 2020, 4 Jan 2021, 31 Jan 2022, 19 Jan 2023. 

Monero 5 5 30 Dec 2018, 15 Dec 2019, 11 Dec 2020, 29 Dec 2021, 23 Dec 2022. 

Ripple 5 5 30 Dec 2018, 7 Jan 2020, 30 Dec 2020, 17 Dec 2021, 8 Dec 2022. 

 

4.2 Comparative Analysis of Factor Models 

The comparison between one-factor and three-factor models reveals 

important insights about the evolution of cryptocurrency market efficiency. While 
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both models identify similar numbers of breaks, the timing and interpretation of 

these breaks differ in meaningful ways. The three-factor model generally identifies 

breaks slightly later than the one-factor model, suggesting that size and 

momentum factors may initially absorb some market structure changes before 

they manifest as breaks in the overall alpha structure. 

 

Bitcoin and Cardano show interesting deviations from the general pattern. 

In the three-factor specification, Bitcoin exhibits only four breaks compared to five 

in the one-factor model, suggesting that some apparent structural changes may be 

attributed to evolving risk factor relationships rather than fundamental shifts in 

alpha generation. Conversely, Cardano shows differential sensitivity to factor 

specifications, with the BIC criterion identifying four breaks while the ML 

criterion suggests five breaks in the three-factor model. 

 

5. Discussion and Concluding Remarks 

 

This study has provided strong evidence for the presence of distinct regimes 

in cryptocurrency markets through a novel Bayesian framework that synthesises 

recent methodological advances in structural break detection. Our findings 

demonstrate that cryptocurrency alphas exhibit systematic patterns of structural 

change that coincide with significant market developments, technological 

innovations, and regulatory shifts. The identification of five distinct regimes 

across most major cryptocurrencies suggests that the evolution of these markets 

is characterised by discrete jumps in market structure rather than gradual 

transitions. 

 

The temporal clustering of structural breaks around specific periods offers 

valuable insights into the nature of cryptocurrency market development. The 

consistent finding of break points during periods of significant market stress, such 

as the 2018 market correction and the COVID-19 pandemic, suggests that external 

shocks can fundamentally alter the alpha-generating processes in cryptocurrency 

markets. Moreover, the identification of breaks during periods of technological 
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advancement and institutional adoption indicates that internal market evolution 

plays a crucial role in shaping return dynamics. 

 

Our methodological framework, which combines the Adaptive Bayesian 

Changepoints with Outliers approach and hierarchical model selection, has proved 

particularly effective in capturing the complex dynamics of cryptocurrency 

markets. The robust performance of our approach across different model 

specifications and cryptocurrencies validates its utility for analysing markets 

characterised by extreme price movements and heterogeneous trading behaviour. 

The framework's ability to distinguish genuine structural breaks from temporary 

volatility clusters represents a significant advancement in our understanding of 

cryptocurrency market dynamics. 

 

The comparison between one-factor and three-factor models reveals the 

evolving nature of risk pricing in cryptocurrency markets. The systematic 

differences in break timing between the two specifications suggest that the 

market's response to structural changes has become more nuanced as the asset 

class has matured. This finding has important implications for portfolio 

management and risk assessment, particularly given the growing institutional 

interest in cryptocurrency investments. 

 

Our results have significant implications for market participants, 

regulators, and academics. For investors, the regular occurrence of structural 

breaks suggests the need for dynamic investment strategies that can adapt to 

regime changes. The clustering of breaks across different cryptocurrencies 

indicates limited diversification benefits during regime transitions, highlighting 

the importance of temporal diversification strategies. For regulators, our findings 

underscore the impact of policy interventions on market structure and suggest the 

need for carefully calibrated approaches that consider the potential for structural 

breaks. 
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The identification of distinct market regimes also has implications for 

market efficiency theory as applied to cryptocurrency markets. Rather than 

exhibiting a steady progression towards efficiency, these markets appear to 

undergo discrete jumps in their price formation processes. This pattern suggests 

that traditional concepts of market efficiency may need to be modified to account 

for the unique characteristics of cryptocurrency markets, particularly their 

technological underpinnings and regulatory environment. 

 

Looking ahead, several promising avenues for future research emerge from 

our analysis. The development of forward-looking models for regime prediction 

represents a natural extension of our work. Additionally, investigating the cross-

market spillover effects of regime changes and extending the analysis to smaller 

cryptocurrencies could provide valuable insights into market interconnectedness. 

The application of our methodological framework to other aspects of 

cryptocurrency markets, such as liquidity provision and price discovery, may yield 

further insights into the evolution of this important asset class. 

 

In conclusion, our study makes substantial contributions to the 

understanding of cryptocurrency market dynamics through its methodological 

innovations and empirical findings. The regular occurrence of structural breaks in 

cryptocurrency alphas suggests that market participants must remain vigilant to 

regime changes and adapt their strategies accordingly. As cryptocurrency markets 

continue to evolve, the ability to identify and respond to structural breaks will 

become increasingly important for successful market participation. Our findings 

not only advance the academic literature on cryptocurrency markets but also 

provide practical insights for market participants navigating this dynamic asset 

class. 
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